Researcher

About

Thing
Cofactor will automatically discover the description of this topic and display it here.

Mentions

“We do have the idea of being gender equal…but we have a long way to go before we are gender equal,” argues Anneli Häyren, a researcher at the Centre for Gender Research at Uppsala University in Sweden. “I think it will take quite a lot of time - another 50 years at least - until we get there - and that is only if we keep working at it.”

Numerous innovations have hit life science labs in the past decade, such as new techniques for designing DNA and editing genomes. Yet, researchers still rely on older tools — such as paper notebooks, Excel spreadsheets, and email — to manage data collected from those innovations. This means time is wasted organizing, finding, and duplicating information before even starting new experiments.

Even though DNA sequencing technology is becoming increasingly accessible, it is still difficult to glean helpful information from an individual’s DNA. That is because there is a lack of reference data compiled from other people’s DNA. Most reference data is currently curated by academic institutions and is often compiled in different formats, making it difficult for doctors and researchers to use.

As hospitals and public health organizations switch to using genomic data for testing, searching through genomic data can still take some time. Y Combinator-backed startup, One Codex, wants to help researchers, clinicians and public health officials, who have sequenced more than 100,000 genomes and created petabytes of data, to search this data.

Through its Genomic Medicine Initiative (GMI), UCSF has integrated data from a comprehensive cancer genetic testing program into the electronic medical records of patients at the UCSF Medical Center. Not only does it allow for continuity of care with all testing and treatment results tied to the same electronic record, but it also allows physicians and researchers to identify larger patterns in the data that can lead to the development of better treatments – which is known as precision medicine.

According to the company’s co-founder and Chief Operating Officer Megan Klimen, 3Scan can eliminate some drudgery for drug researchers who have been stuck using manual processes for tissue analysis.

The planned software tool will combine Desktop Genetics' predictive biomodelling capabilities with heterogeneous genomic and epigenomic datasets. It will help researchers investigate the epigenetic mechanisms that underpin resistance to chemotherapy in ovarian cancer cell lines.

“Our vision is about closing the design-build-test-and-evolve loop,” said CEO Mike Fero, who was a researcher at Stanford focusing on protein localization and who was previously a vice president at a computational genomics company called Neomorphics that was sold to Affymetrix in 2000. “We want to shorten the time frame it takes to get your DNA built and run more experiments.”

"Xcell Biosciences created the Technology Access Program (TAP) to accelerate the discovery of novel applications using our proprietary Primary Cell Control Systems in the field of Immunotherapy. We launched the TAP to collaborate with researchers and commercial partners in advancing the technology frontier of Human Microenvironments (HME) including Tumor Microenvironments (TME). We will provide the instrumentation and technical support necessary for partners to jointly invent and validate new discovery technology," said Janette Phi, COO. "Our solutions focus on clinical researchers developing therapies at the convergence of precision medicine, stem cell technology, and immunotherapy."

Predictive Oncology has appointed Dan Handley to its board of directors. Handley is a professor and director of the Clinical and Translational Genome Research Institute of Southern California University. Previously, he was chief scientific officer of the Clinical and Translational Genome Research Institute, a Florida-based non-profit. He also previously served as chief scientific officer for Advanced Healthcare Technology Solutions; as a senior researcher at Procter & Gamble; a senior administrator, researcher, and laboratory manager at the David Geffen UCLA School of Medicine; and as a founding biotechnology inventor for the National Genetics Institute.

OnRamp.Bio's flagship product, ROSALIND™, enables researchers, drug developers and bench scientists to analyze raw genomics data by providing a transformative experience through point-and-click experiment set up, interactive data visualization and interpretation. This new approach increases productivity by freeing up time for the bioinformatician to focus on more challenging workloads while making bioinformatic analysis more accessible for the scientist to do more discovery with their data.

The coronavirus pandemic has brought chaos to lives and economies around the world. But efforts to curb the spread of the virus might mean that the planet itself is moving a little less. Researchers who study Earth’s movement are reporting a drop in seismic noise — the hum of vibrations in the planet’s crust — that could be the result of transport networks and other human activities being shut down. They say this could allow detectors to spot smaller earthquakes and boost efforts to monitor volcanic activity and other seismic events.

See also

What does npm exec do? What is the difference between "npm exec" and "npx"?

What are the building blocks of OWL ontologies?

Learn more about "RDF star", "SPARQL star", "Turtle star", "JSON-LD star", "Linked Data star", and "Semantic Web star".

The Hadamard gate is one of the simplest quantum gates which acts on a single qubit.

Learn more about the bra–ket notation.

Progressive Cactus is an evolution of the Cactus multiple genome alignment protocol that uses the progressive alignment strategy.

The Human Genome Project is an ambitious project which is still underway.

What are SVMs (support vector machines)?

Find out more in Eckher's article about TensorFlow.js and linear regression.

On the importance of centralised metadata registries at companies like Uber.

Facebook's Nemo is a new custom-built platform for internal data discovery. Learn more about Facebook's Nemo.

What is Data Commons (datacommons.org)? Read Eckher's introduction to Data Commons (datacommons.org) to learn more about the open knowledge graph built from thousands of public datasets.

Learn more about how Bayer uses semantic web technologies for corporate asset management and why it enables the FAIR data in the corporate environment.

An introduction to WikiPathways by Eckher is an overview of the collaboratively edited structured biological pathway database that discusses the history of the project, applications of the open dataset, and ways to access the data programmatically.

Eckher's article about question answering explains how question answering helps extract information from unstructured data and why it will become a go-to NLP technology for the enterprise.

Read more about how document understanding AI works, what its industry use cases are, and which cloud providers offer this technology as a service.

Lexemes are Wikidata's new type of entity used for storing lexicographical information. The article explains the structure of Wikidata lexemes and ways to access the data, and discusses the applications of the linked lexicographical dataset.

The guide to exploring linked COVID-19 datasets describes the existing RDF data sources and ways to query them using SPARQL. Such linked data sources are easy to interrogate and augment with external data, enabling more comprehensive analysis of the pandemic both in New Zealand and internationally.

The introduction to the Gene Ontology graph published by Eckher outlines the structure of the GO RDF model and shows how the GO graph can be queried using SPARQL.

The overview of the Nobel Prize dataset published by Eckher demonstrates the power of Linked Data and demonstrates how linked datasets can be queried using SPARQL. Use SPARQL federation to combine the Nobel Prize dataset with DBPedia.

Learn why federated queries are an incredibly useful feature of SPARQL.

What are the best online Arabic dictionaries?

How to pronounce numbers in Arabic?

List of months in Maori.

Days of the week in Maori.

The list of country names in Tongan.

The list of IPA symbols.

What are the named entities?

What is computational linguistics?

Learn how to use the built-in React hooks.

Learn how to use language codes in HTML.

Learn about SSML.

Browse the list of useful UX resources from Google.

Where to find the emoji SVG sources?.

What is Wikidata?

What's the correct markup for multilingual websites?

How to use custom JSX/HTML attributes in TypeScript?

Learn more about event-driven architecture.

Where to find the list of all emojis?

How to embed YouTube into Markdown?

What is the Google Knowledge Graph?

Learn SPARQL.

Explore the list of coronavirus (COVID-19) resources for bioinformaticians and data science researchers.

Sequence logos visualize protein and nucleic acid motifs and patterns identified through multiple sequence alignment. They are commonly used widely to represent transcription factor binding sites and other conserved DNA and RNA sequences. Protein sequence logos are also useful for illustrating various biological properties of proteins. Create a sequence logo with Sequence Logo. Paste your multiple sequence alignment and the sequence logo is generated automatically. Use the sequence logo maker to easily create vector sequence logo graphs. Please refer to the Sequence Logo manual for the sequence logo parameters and configuration. Sequence Logo supports multiple color schemes and download formats.

Sequence Logo is a web-based sequence logo generator. Sequence Logo generates sequence logo diagrams for proteins and nucleic acids. Sequence logos represent patterns found within multiple sequence alignments. They consist of stacks of letters, each representing a position in the sequence alignment. Sequence Logo analyzes the sequence data inside the user's web browser and does not store or transmit the alignment data via servers.

Te Reo Maps is an online interactive Maori mapping service. All labels in Te Reo Maps are in Maori, making it the first interactive Maori map. Te Reo Maps is the world map, with all countries and territories translated into Maori. Please refer to the list of countries in Maori for the Maori translations of country names. The list includes all UN members and sovereign territories.

Phonetically is a web-based text-to-IPA transformer. Phonetically uses machine learning to predict the pronunciation of English words and transcribes them using IPA.

Punycode.org is a tool for converting Unicode-based internationalized domain names to ASCII-based Punycode encodings. Use punycode.org to quickly convert Unicode to Punycode and vice versa. Internationalized domains names are a new web standard that allows using non-ASCII characters in web domain names.

My Sequences is an online platform for storing and analyzing personal sequence data. My Sequences allows you to upload your genome sequences and discover insights and patterns in your own DNA.

Словообразовательный словарь «Морфема» дает представление о морфемной структуре слов русского языка и слов современной лексики. Для словообразовательного анализа представлены наиболее употребительные слова современного русского языка, их производные и словоформы. Словарь предназначен школьникам, студентам и преподавателям. Статья разбора слова «сладкоежка» по составу показывает, что это слово имеет два корня, соединительную гласную, суффикс и окончание. На странице также приведены слова, содержащие те же морфемы. Словарь «Морфема» включает в себя не только те слова, состав которых анализируется в процессе изучения предмета, но и множество других слов современного русского языка. Словарь адресован всем, кто хочет лучше понять структуру русского языка.

Разбор слова "кормушка" по составу.

Разбор слова "светить" по составу.

Разбор слова "сбоку" по составу.

Разбор слова "шиповник" по составу.

Разбор слова "народ" по составу.

Разбор слова "впервые" по составу.

Разбор слова "свежесть" по составу.

Разбор слова "издалека" по составу.

Разбор слова "лесной" по составу.